Based on our record, Keras should be more popular than TensorFlow. It has been mentiond 35 times since March 2021. We are tracking product recommendations and mentions on various public social media platforms and blogs. They can help you identify which product is more popular and what people think of it.
Converting the images to a tensor: Deep learning models work with tensors, so the images should be converted to tensors. This can be done using the to_tensor function from the PyTorch library or convert_to_tensor from the Tensorflow library. - Source: dev.to / over 2 years ago
So I went to tensorflow.org to find some function that can generate a CSR representation of a matrix, and I found this function https://www.tensorflow.org/api_docs/python/tf/raw_ops/DenseToCSRSparseMatrix. Source: almost 3 years ago
Can anyone offer up an explanation for why there is a performance difference, and if possible, what could be done to fix it. I'm using the installation guidelines found on tensorflow.org and installing tf2.7 through pip using an anaconda3 env. Source: about 3 years ago
I don't have much experience with TensorFlow, but I'd recommend starting with TensorFlow.org. Source: about 3 years ago
I have looked at this TensorFlow website and TensorFlow.org and some of the examples are written by others, and it seems that I am stuck in RNNs. What is the best way to install TensorFlow, to follow the documentation and learn the methods in RNNs in Python? Is there a good tutorial/resource? Source: about 3 years ago
The unchallenged leader in AI development is still Python. And Keras, and robust community support. - Source: dev.to / about 1 month ago
If you need simplicity, Keras is a great high-level API built on top of TensorFlow. It lets you quickly prototype neural networks without worrying about low-level implementations. Keras is perfect for getting those first models up and running—an essential part of the startup hustle. - Source: dev.to / 8 months ago
At its heart is TensorFlow Core, which provides low-level APIs for building custom models and performing computations using tensors (multi-dimensional arrays). It has a high-level API, Keras, which simplifies the process of building machine learning models. It also has a large community, where you can share ideas, contribute, and get help if you are stuck. - Source: dev.to / 8 months ago
The core model architecture for Magika was implemented using Keras, a popular open source deep learning framework that enables Google researchers to experiment quickly with new models. - Source: dev.to / about 1 year ago
As a beginner, I was looking for something simple and flexible for developing deep learning models and that is when I found Keras. Many AI/ML professionals appreciate Keras for its simplicity and efficiency in prototyping and developing deep learning models, making it a preferred choice, especially for beginners and for projects requiring rapid development. - Source: dev.to / about 1 year ago
PyTorch - Open source deep learning platform that provides a seamless path from research prototyping to...
Scikit-learn - scikit-learn (formerly scikits.learn) is an open source machine learning library for the Python programming language.
IBM Watson Studio - Learn more about Watson Studio. Increase productivity by giving your team a single environment to work with the best of open source and IBM software, to build and deploy an AI solution.
TFlearn - TFlearn is a modular and transparent deep learning library built on top of Tensorflow.
Azure Machine Learning Service - Build and deploy machine learning models in a simplified way with Azure Machine Learning service. Make machine learning more accessible with automated capabilities.
OpenCV - OpenCV is the world's biggest computer vision library